
Operational ERP Architecture for aligning
Rollout Projects with Operations in global

Template Programs

consulting4bit

June 7, 2013



Introduction
Global ERP template programs are characterized by a multitude of rollout
projects that must be managed in parallel to operations. The operational ERP
architecture is a key success factor for managing design, development and test-
ing of all ERP system configurations effectively . If set up appropriately projects
run smoothly in parallel to operations and typical global template program ob-
jectives like business process standardization and harmonization are well achiev-
able. If not aligned with the overall program approach the risks are high that
the operational ERP architecture will become a bottleneck for your template
initiative. A bad design can even lead to a standstill of projects if inconsistencies
in the ERP system landscape need to be fixed.

This document explains the aspects you need to consider when designing an
appropriate operational ERP architecture. The operational ERP architecture
focusses on the aspects that are important for running operations and projects
in parallel. It must be distinguished from the strategic ERP architecture which
focusses on strategic business and IT requirements. This architecture is not
in focus of this document. It will be outlined in general but apart from that
it will be regarded here as a given. Different patterns of the operational ERP
architecture will be explained in more detail. Decision criteria are presented
to evaluate in which situations a specific pattern is recommended or not ap-
propriate. The document concludes with a few general recommendations from
practical experiences that are applicable to all patterns.

Options for designing the strategic ERP Archi-
tecture
Over the last 10 - 15 years years many companies decided to consolidate their
ERP system landscape and started global template programs to deploy a new
ERP system. A key decision in the beginning of such programs is to find the
right strategic ERP architecture. The strategic ERP architecture refers to the
long-term system landscape structure. It must fulfill business and IT require-
ments which are derived from the overall strategy. Any global ERP template
initiative should start with a detailed study how to design this architecture.
The design options found in practice are limited and focus on the dimensions
for structuring the ERP system landscape. The following dimensions will be
discussed here in short:

• Set up regional ERP systems

• Set up functional ERP systems

• Set up divisional ERP systems

• Set up one ERP system for all businesses and functions

• Implement a mix of different ERP types

The approach to set up regional ERP systems was very common in the last
years. It was driven mainly by concerns that one global ERP system would be

c© consulting4bit 2013 Page 1



too complex to manage and would impose high risks for the business in case of
failure. Also the amount of transactional data of some companies is so immense
that is was considered as too much for one system. Business concerns referred
to aspects like flexibility which was seen at risk with one large IT solution that
might not keep pace with different business needs and different market develop-
ment speeds. Some of these concerns are today no longer vaild as the scalability
of ERP matured. Many IT organizations are today capable of running even
very large solutions reliably. The flexibility discussion is still ongoing. Regional
systems do not solve this issue as regions itself are very heterogeneous.

Functional ERP systems have often been chosen by companies who had al-
ready organized their business entities according to functions, i.e. have pure
sales or production affiliates. The biggest challenge with functional ERP sys-
tems is to manage the integration between the business entities which has a
large impact on the design of financial and supply chain processes.

The divisional approach was favoured by companies with a very heteroge-
neous business. Typical for those businesses are M&A activities which happen
frequently. Having enough flexibility within the divisions was therefore rated
very high. But as divisions can be managed like independent companies the ap-
proach of building divisional ERP systems is not fundamentally different from
the scenario "One global ERP".

In recent years a new approach came up which focussed on a combination
of different ERP solutions for large and small affiliates of a company. This ap-
proach is driven by costs of ERP solutions. Often solutions like SAP ERP are
too expensive for small affiliates with just a limited set of requirements. Cloud-
based ERP solutions are becoming more and more attractive for these affiliates.
The biggest challenge of using different ERP solutions is their integration, sim-
ilar to the functional approach.

It is out of scope here to describe the decision process how to find an ap-
propriate solution for the strategic ERP architecture. It must finally support
your business and IT strategy. And it must be implemented in a way that it
supports the alignment of rollout project activities with operations. How such
an alignment can look like will be explained in the next sections. The scenario
"One global ERP solution" will be used to explain the alignment process. The
biggest influencing factor for the alignment process is the software architecture
of the ERP system. As SAP ERP is the market leader in ERP systems it will
be used in the following to explain the alignment process.

Objectives for aligning Rollouts with Operations

After the strategic ERP architecture has been finalized the foundations for
the global template program are laid. During the template build phase the op-
erational architecture is prepared to ensure that after the template is deployed
the first rollout projects can start. The critical phase for the operational archi-
tecture begins after the first Go lives of the pilot projects when the next wave

c© consulting4bit 2013 Page 2



of rollouts starts. Now projects and operations must be managed in parallel.
The operational architecture must ensure that

• operations are not jeopardized by projects,

• it is possible to run several projects in parallel to operations,

• configurations (include customizing + developments) do not lead to ERP
system inconsistencies and

• projects and operations can work largely independently from each other
with a minimum amount of reconciliations.

The operational ERP architecture is your infrastructure for managing de-
sign, development and testing of all ERP system configurations effectively. The
patterns for this architecture you will find in practice are explained in the fol-
lowing section.

Patterns for the operational ERP Architecture
The simplest ERP system landscape includes three systems: A development
system DEV, a quality assurance system QA and the productive system PROD:

For understanding the challenges of running projects in parallel to operations it
is important to understand the software architecture of ERP. Here we use SAP
ERP as example. The software architecture of SAP ERP distinguishes three
sections:

• The development workbench for creating programs

• The client-independent customizing for configuring system settings for all
clients

• The client-dependent customizing fot configuring system settings for a
specific client only

The client is a technical element that divides an ERP system into separate
sections. A SAP ERP system can have several different clients. If customizing
settings are client-dependent this means that they include the client number (3-
digit key) as part of their key. If the ERP system has more than one client the

c© consulting4bit 2013 Page 3



client-independent customizing and the development workbench can be used to
develop and customize settings that are relevant for all clients. By this software
architecture common and individual configurations shall be enabled.

Using this basic operational ERP architecture for global template programs
is usually not recommended. A main reason that speaks against this architecture
is that all projects and operations use the same client. This requires high rec-
onciliation efforts between projects and operations already when projects start
and has technical risks. A frequent problem in practice is that the same config-
urations are changed by various projects. If these changes are not synchronized
this can lead to inconsistencies after transport. Project configurations undergo
a series of changes in the design phase and it is not reasonable to mix these with
operational changes which are usually more clear-defined.

A better approach for global template programs is to use different clients
for projects and operations. An exemplary ERP architecture with two projects
and operations could then look as follows:

This ERP architecture uses different clients for projects 1 and 2 and for op-
erations in the development DEV system. This allows that the projects and
operations can configure business processes by using client-specific customiza-
tion independent from each other. Only client-independent customizing and
developments need to be reconciliated between all parties. From experience, a
company can implement 80 percent or more of its required functionalities by
customization only. Some exceptions apply for certain industries or countries
that are heavily regulated. But less than 20 percent of functionalities have to
be made in the sections that are client-independent. Risks due to interferences
between projects and operations can thus be reduced considerably

In order to be effective a few procedures need to be followed in an operational
ERP architecture with several clients. As the length of the design phase of a
rollout project varies and can easily cover 3 to 6 month it must be ensured that
changes from operations are regularly transported to the project clients. Main
reason for this is that project tests should be done in a system environment
which resembles the actual operational settings. Tests in the design phase in
the development system are functional tests which are frequently repeated and

c© consulting4bit 2013 Page 4



usually do not need a formal documentation. Changes from operations which
are moved to the project clients are therefore less critical for the project sched-
ule. Settings from other implementation projects are not moved between the
clients. They remain in their client until the design phase ends.

At the end of the design phase a consolidation phase starts. All customizing
settings of the projects are consolidated and moved to the operational client
(sometimes also called "Golden Client"). This consolidation should be done by
a central team. As the consolidation process can require a resolution of imple-
mentation conflicts (e.g. duplicate keys in customizing tables) it is not fully
automated and includes transports as well as manual activities.

Both operational architectures discussed so far have client-independent cus-
tomizing and the development workbench in common. Some companies favour
an approach for building up a template that starts with a lean template and
adds large chunks of functionalities in the first rollouts. These chunks also in-
clude developments. For those companies an approach to set up a separate
project development system can be reasonable as it further minimizes the risks
of conflicts between projects and operations. In a project development landscape
only rollout project configurations are done. Configurations from operations are
moved to the project system via transports. Configurations from the projects
which also include developments are moved to the operations client after they
are finalized and tested.

There are two variants you will often find in a project system landscape.
The first variant includes only a project development system while the second
variant includes an additional quality assurance system. The main motivation
for having a quality assurance system is that the projects can do more and bet-
ter tests and will deliver a better configuration quality at the end of the design
phase. The downside of this additional system is that the architecture is more
complex and projects are synchronized later with operations. Both variants for
architectures with separated project development and quality assurance systems
are illustrated on the next two pages:

c© consulting4bit 2013 Page 5



c©
consulting4bit

2013
Page

6



c©
consulting4bit

2013
Page

7



The next section will list up and discuss decision criteria in which situation
which operational ERP architecture will be appropriate for your program. Ex-
cept the first model which has obvious deficits the fitness of the other three
models depends on the situation.

Assessment Criteria for selecting the operational
ERP Architecture
Four different operational ERP architectures have been discussed so far. The
following list of criteria can help you to find the best approach for your template
program:

• C1: Completeness of Template Content

• C2: Expected Amount of local Functionalities in a Rollout

• C3: Availability and Experience of global Implementation Team

• C4: Expected Quality of Project Implementations and Tests

• C5: Number and Complexity of Projects that run in parallel

• C6: Status of Change and Release Management

• C7: Degree of Standardization

C1: The completeness of template content describes to what extent the tem-
plate functionalities cover what is needed during the rollouts. Companies who
choose to set up a template very fast complement the content during the roll-
outs. In this case the template does only contains core functionalities which
cover far less than the estimated 80 % of functionalities where you expect that
they can be used globally. Large parts of functionalities are then added in the
first rollouts. In this situation a project system is more appropriate than a N
client ERP system.

C2: The expected amount of local functionalities in a rollout refers to the
question how many new local functionalities do you expect in a rollout project.
Even if the template content already covers 80 % or more of what is needed a
rollout project could require specific local functionalities that are complex and
large. Typical examples are rollouts to a country like Brasil which has very ex-
tensive legal requirements or the introduction of a complete new ERP module
for a site. For such rollout projects a seperate project system is advantageous.

C3: The role of the global implementation team in a template project is to
coordinate all activities that refer to global developments and configurations.
The global implementation team consolidates what the different projects deliver
and it has a quality assurance role. It is the guardian of the global development
system and the golden client. Irrespective of which operational ERP architec-
ture you use you definitely need such a team. But if you do not yet have this

c© consulting4bit 2013 Page 8



team then starting your template project without a project system is very risky.

C4: The quality you can expect from the rollout projects depends on the
qualifications of the people responsible for configurations and tests. If you have
an experienced team which has already done some projects a seperate project
development or project quality assurance system might not be needed. If the
project delivers a poor quality it is reasonable to use a project development and
even a quality assurance system to limit impacts of bad configurations.

C5: Each template program needs a rollout plan and a strategy how to build
the rollout waves. Project complexity, duration, locations or technical priorities
are just a few examples for criteria that can be used for building the rollout plan.
If your projects are small and less complex a separate project system might not
be needed. But if you run a large program with several projects in different
regions a project system helps to reduce risks and offers more flexibility for the
implementation schedule.

C6: Processes for handling changes and managing releases are mandatory
for global template programs. Often these processes are introduced when a
global template is started. In the beginning of projects during the design phase
many changes can be expected. A seperate project system landscape could be
advantageous as a lean procedure for handling changes could be applied here.

C7: The degree of standardization measures how many organizations use
the same process. Templates usually strive for a high degree of standardization.
If a process which is used by many organizations is changed the impact can
be large. If risks should be reduced to a minimum a seperate project system
is the best approach. But also an N client ERP architecture can handle this.
Apart from the technical aspects changes of global standards must be discussed
between all stakeholders.

The following table summarizes the ratings for the different criteria:

c© consulting4bit 2013 Page 9



The evaluation shows that the first model 1 Client ERP is usually not rec-
ommended. Even after a template program is finished you might have projects
that reach a certain complexity where a separate client or even a project de-
velopment system can make sense. Unless for very simple projects this model
should only be used for operational changes running according to change request
procedures.
The other three models have advantages and disadvantages. Their rating mainly
differs according to the lifecycle your template program is in and according to
the amount of experience your team has acquired. In a template startup phase
with a team that does not have much experience with rollout projects a seperate
project system landscape has clear advantages. But after two or three waves
of rollouts you hopefully have a template that covers 80 % or more of what
you need. Then a switch from a project system landscape to a N client system
landscape could be made. Although it is possible to continue using a seperate
project system or even a project quality assurance system you should always
check if this landscape is still needed as it is more complex and expensive.

c© consulting4bit 2013 Page 10



Summary and Recommendations
The discussed models for the operational ERP architecture represent common
patterns. You will find further variations of these patterns. Which pattern you
chose to build your operational ERP architecture will finally depend on

• the lifecycle your template program is in,

• the experience your organization has with managing implementation risks
and architectural complexity and

• the degree of standardization you want to achieve.

Depending on the lifecycle of your template program you should usually
start with a project system landscape and consider a simpler multi-client model
after the first rollouts are done. A global team that reviews what the projects
do and implements that in the golden client is a key success factor. It should
not be bypassed by allowing local organizations to do their own develpments.
This is not only very risky but also undermines the objectives of having globally
standardized processes.

It is important that the concept for your operational ERP architecture is
clear before the rollouts start. You should plan a dry run with your project
team and discuss how a rollout project with its different phases runs through
the operational ERP architecture. The project plan must reflect this as you
will have specific activities in the different systems. As testing is very much
interrelated with this architecture the test concept must be closely aligned with
your concept. You can review the architecture after each rollout wave. But
ensure stability while rollouts are in progress.

c© consulting4bit 2013 Page 11


